Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1344095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469330

RESUMO

Homogentisate Phytyltransferase (HPT) catalyzes condensation of homogentisate (HGA) and phytyl diphosphate (PDP) to produce tocopherols, but can also synthesize tocotrienols using geranylgeranyl diphosphate (GGDP) in plants engineered for deregulated HGA synthesis. In contrast to prior tocotrienol biofortification efforts, engineering enhanced tocopherol concentrations in green oilseeds has proven more challenging due to the integral role of chlorophyll metabolism in supplying the PDP substrate. This study show that RNAi suppression of CHLSYN coupled with HPT overexpression increases tocopherol concentrations by >two-fold in Arabidopsis seeds. We obtained additional increases in seed tocopherol concentrations by engineering increased HGA production via overexpression of bacterial TyrA that encodes chorismate mutase/prephenate dehydrogenase activities. In overexpression lines, seed tocopherol concentrations increased nearly three-fold, and resulted in modest tocotrienol accumulation. We further increased total tocochromanol concentrations by enhancing production of HGA and GGDP by overexpression of the gene for hydroxyphenylpyruvate dioxygenase (HPPD). This shifted metabolism towards increased amounts of tocotrienols relative to tocopherols, which was reflected in corresponding increases in ratios of GGDP/PDP in these seeds. Overall, our results provide a theoretical basis for genetic improvement of total tocopherol concentrations in green oilseeds (e.g., rapeseed, soybean) through strategies that include seed-suppression of CHLSYN coupled with increased HGA production.

2.
Plant Cell ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242838

RESUMO

Plants need to acclimate to different stresses to optimize growth under unfavorable conditions. In Arabidopsis (Arabidopsis thaliana), the abundance of the chloroplast envelope protein FATTY ACID EXPORT PROTEIN1 (FAX1) decreases after the onset of low temperatures. However, how FAX1 degradation occurs and whether altered FAX1 abundance contributes to cold tolerance in plants remains unclear. The rapid cold-induced increase in RHOMBOID-LIKE PROTEASE11 (RBL11) transcript levels, the physical interaction of RBL11 with FAX1, the specific FAX1 degradation after RBL11 expression, and the absence of cold-induced FAX1 degradation in rbl11 loss-of-function mutants suggest that this enzyme is responsible for FAX1 degradation. Proteomic analyses showed that rbl11 mutants have higher levels of FAX1 and other proteins involved in membrane lipid homeostasis, suggesting that RBL11 is a key element in the remodeling of membrane properties during cold conditions. Consequently, in the cold, rbl11 mutants show a shift in lipid biosynthesis towards the eukaryotic pathway, which coincides with impaired cold tolerance. To test whether cold sensitivity is due to increased FAX1 levels, we analyzed FAX1 overexpressors. The rbl11 mutants and FAX1 overexpressor lines show superimposable phenotypic defects upon exposure to cold temperatures. Our re-sults show that the cold-induced degradation of FAX1 by RBL11 is critical for Arabidop-sis to survive cold and freezing periods.

3.
Plant Cell ; 36(4): 1140-1158, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38124486

RESUMO

Chlorophyll degradation causes the release of phytol, which is converted into phytyl diphosphate (phytyl-PP) by phytol kinase (VITAMIN E PATHWAY GENE5 [VTE5]) and phytyl phosphate (phytyl-P) kinase (VTE6). The kinase pathway is important for tocopherol synthesis, as the Arabidopsis (Arabidopsis thaliana) vte5 mutant contains reduced levels of tocopherol. Arabidopsis harbors one paralog of VTE5, farnesol kinase (FOLK) involved in farnesol phosphorylation. Here, we demonstrate that VTE5 and FOLK harbor kinase activities for phytol, geranylgeraniol, and farnesol with different specificities. While the tocopherol content of the folk mutant is unchanged, vte5-2 folk plants completely lack tocopherol. Tocopherol deficiency in vte5-2 plants can be complemented by overexpression of FOLK, indicating that FOLK is an authentic gene of tocopherol synthesis. The vte5-2 folk plants contain only ∼40% of wild-type amounts of phylloquinone, demonstrating that VTE5 and FOLK both contribute in part to phylloquinone synthesis. Tocotrienol and menaquinone-4 were produced in vte5-2 folk plants after supplementation with homogentisate or 1,4-dihydroxy-2-naphthoic acid, respectively, indicating that their synthesis is independent of the VTE5/FOLK pathway. These results show that phytyl moieties for tocopherol synthesis are completely but, for phylloquinone production, only partially derived from geranylgeranyl-chlorophyll and phytol phosphorylation by VTE5 and FOLK.


Assuntos
Arabidopsis , Fosfotransferases (Aceptor do Grupo Álcool) , Tocoferóis , Tocoferóis/metabolismo , Vitamina E/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Vitamina K 1/metabolismo , Fitol/metabolismo , Farneseno Álcool/metabolismo , Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Clorofila/metabolismo
4.
PLoS Biol ; 21(9): e3002305, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37721949

RESUMO

Protein function can be modulated by phase transitions in their material properties, which can range from liquid- to solid-like; yet, the mechanisms that drive these transitions and whether they are important for physiology are still unknown. In the model plant Arabidopsis, we show that developmental robustness is reinforced by phase transitions of the plasma membrane-bound lipid-binding protein SEC14-like. Using imaging, genetics, and in vitro reconstitution experiments, we show that SEC14-like undergoes liquid-like phase separation in the root stem cells. Outside the stem cell niche, SEC14-like associates with the caspase-like protease separase and conserved microtubule motors at unique polar plasma membrane interfaces. In these interfaces, SEC14-like undergoes processing by separase, which promotes its liquid-to-solid transition. This transition is important for root development, as lines expressing an uncleavable SEC14-like variant or mutants of separase and associated microtubule motors show similar developmental phenotypes. Furthermore, the processed and solidified but not the liquid form of SEC14-like interacts with and regulates the polarity of the auxin efflux carrier PINFORMED2. This work demonstrates that robust development can involve liquid-to-solid transitions mediated by proteolysis at unique plasma membrane interfaces.

5.
BMC Cardiovasc Disord ; 23(1): 454, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700226

RESUMO

BACKGROUND: Cardiovascular disease (CVD) remains the leading cause of death worldwide. The main driving force behind this association is coronary artery disease (CAD), the manifestation of atherosclerosis in the coronary circulation. Cornerstones in the development of CAD are pathologies in lipid metabolism. In recent years, ongoing research has identified ceramides, a subclass of sphingolipids to be mediators of CVD. The aim of this study is to investigate the influence of type II diabetes mellitus (DM) on circulating ceramides and hexosylceramides (HexCers) in CAD patients. METHODS: 24 patients aged 40-90 years with CAD confirmed by angiography were included into a pilot study. Patients with DM were identified by analysis of discharge letters or other medical documents available at the study center. During coronary angiography, arterial blood samples were collected and quantification of sphingolipids in patient serum was performed by mass spectrometry. RESULTS: Statistical analysis showed nine significantly different HexCers in CAD patients with DM compared to patients without DM. Among the nine significantly regulated HexCers, we identified seven d18:1 HexCers. This group contributes to the fourth most abundant subgroup of total ceramides and HexCers in this dataset. HexCer-d18:1-23:1(2-OH) showed the strongest downregulation in the patient group with DM. CONCLUSION: This study suggests that levels of circulating HexCers are downregulated in patients with CAD and concomitant DM compared to patients without DM. Further research is needed to investigate the underlying mechanisms and the suitability of HexCers as possible mediators and/or prognostic markers in CAD.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Ceramidas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Projetos Piloto , Esfingolipídeos , Angiografia Coronária
6.
Plants (Basel) ; 12(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570969

RESUMO

Toxic breakdown products of young Camelina sativa (L.) Crantz, glucosinolates can eliminate microorganisms in the soil. Since microorganisms are essential for phosphate cycling, only insensitive microorganisms with phosphate-solubilizing activity can improve C. sativa's phosphate supply. In this study, 33P-labeled phosphate, inductively coupled plasma mass spectrometry and pot experiments unveiled that not only Trichoderma viride and Pseudomonas laurentiana used as phosphate-solubilizing inoculants, but also intrinsic soil microorganisms, including Penicillium aurantiogriseum, and the assemblies of root-colonizing microorganisms solubilized as well phosphate from apatite, trigger off competitive behavior between the organisms. Driving factors in the competitiveness are plant and microbial secondary metabolites, while glucosinolates of Camelina and their breakdown products are regarded as key compounds that inhibit the pathogen P. aurantiogriseum, but also seem to impede root colonization of T. viride. On the other hand, fungal diketopiperazine combined with glucosinolates is fatal to Camelina. The results may contribute to explain the contradictory effects of phosphate-solubilizing microorganisms when used as biofertilizers. Further studies will elucidate impacts of released secondary metabolites on coexisting microorganisms and plants under different environmental conditions.

7.
PLoS Negl Trop Dis ; 17(8): e0011503, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535695

RESUMO

Previous studies have described the association of onchocerciasis (caused by Onchocerca volvulus) with epilepsy, including nodding syndrome, although a clear etiological link is still missing. Cases are found in different African countries (Tanzania, South Sudan, Uganda, Democratic Republic of the Congo, Central African Republic and Cameroon). In our study we investigated immunological parameters (cytokine, chemokine, immunoglobulin levels) in individuals from the Mahenge area, Tanzania, presenting with either epilepsy or nodding syndrome with or without O. volvulus infection and compared them to O. volvulus negative individuals from the same endemic area lacking neurological disorders. Additionally, cell differentiation was performed using blood smears and systemic levels of neurodegeneration markers, leiomodin-1 and N-acetyltyramine-O, ß-glucuronide (NATOG) were determined. Our findings revealed that cytokines, most chemokines and neurodegeneration markers were comparable between both groups presenting with epilepsy or nodding syndrome. However, we observed elevated eosinophil percentages within the O. volvulus positive epilepsy/nodding syndrome patients accompanied with increased eosinophilic cationic protein (ECP) and antigen-specific IgG levels in comparison to those without an O. volvulus infection. Furthermore, highest levels of NATOG were found in O. volvulus positive nodding syndrome patients. These findings highlight that the detection of distinct biomarkers might be useful for a differential diagnosis of epilepsy and nodding syndrome in O. volvulus endemic areas. Trial-registration: NCT03653975.


Assuntos
Epilepsia , Volvo Intestinal , Síndrome do Cabeceio , Onchocerca volvulus , Oncocercose , Animais , Humanos , Oncocercose/epidemiologia , Síndrome do Cabeceio/epidemiologia , Síndrome do Cabeceio/etiologia , Volvo Intestinal/complicações , Epilepsia/epidemiologia , Uganda/epidemiologia , Citocinas
8.
J Chem Ecol ; 49(9-10): 549-569, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453001

RESUMO

The cyclic depsipeptide FR900359 (FR) is derived from the soil bacterium Chromobacterium vaccinii and known to bind Gq proteins of mammals and insects, thereby abolishing the signal transduction of their Gq protein-coupled receptors, a process that leads to severe physiological consequences. Due to their highly conserved structure, Gq family of proteins are a superior ecological target for FR producing organisms, resulting in a defense towards a broad range of harmful organisms. Here, we focus on the question whether bacteria like C. vaccinii are important factors in soil in that their secondary metabolites impair, e.g., plant harming organisms like nematodes. We prove that the Gq inhibitor FR is produced under soil-like conditions. Furthermore, FR inhibits heterologously expressed Gαq proteins of the nematodes Caenorhabditis elegans and Heterodera schachtii in the micromolar range. Additionally, in vivo experiments with C. elegans and the plant parasitic cyst nematode H. schachtii demonstrated that FR reduces locomotion of C. elegans and H. schachtii. Finally, egg-laying of C. elegans and hatching of juvenile stage 2 of H. schachtii from its cysts is inhibited by FR, suggesting that FR might reduce nematode dispersion and proliferation. This study supports the idea that C. vaccinii and its excreted metabolome in the soil might contribute to an ecological equilibrium, maintaining and establishing the successful growth of plants.


Assuntos
Depsipeptídeos , Nematoides , Animais , Solo , Caenorhabditis elegans , Depsipeptídeos/farmacologia , Bactérias , Transdução de Sinais , Mamíferos
9.
New Phytol ; 239(5): 1903-1918, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37349864

RESUMO

The cuticle is a protective layer covering aerial plant organs. We studied the function of waxes for the establishment of the cuticular barrier in barley (Hordeum vulgare). The barley eceriferum mutants cer-za.227 and cer-ye.267 display reduced wax loads, but the genes affected, and the consequences of the wax changes for the barrier function remained unknown. Cuticular waxes and permeabilities were measured in cer-za.227 and cer-ye.267. The mutant loci were isolated by bulked segregant RNA sequencing. New cer-za alleles were generated by genome editing. The CER-ZA protein was characterized after expression in yeast and Arabidopsis cer4-3. Cer-za.227 carries a mutation in HORVU5Hr1G089230 encoding acyl-CoA reductase (FAR1). The cer-ye.267 mutation is located to HORVU4Hr1G063420 encoding ß-ketoacyl-CoA synthase (KAS1) and is allelic to cer-zh.54. The amounts of intracuticular waxes were strongly decreased in cer-ye.267. The cuticular water loss and permeability of cer-za.227 were similar to wild-type (WT), but were increased in cer-ye.267. Removal of epicuticular waxes revealed that intracuticular, but not epicuticular waxes are required to regulate cuticular transpiration. The differential decrease in intracuticular waxes between cer-za.227 and cer-ye.267, and the removal of epicuticular waxes indicate that the cuticular barrier function mostly depends on the presence of intracuticular waxes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Proteínas de Saccharomyces cerevisiae , Hordeum/genética , Hordeum/metabolismo , Folhas de Planta/metabolismo , Água/metabolismo , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ceras/metabolismo , Mutação/genética , Epiderme Vegetal/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo
10.
Methods Enzymol ; 683: 171-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37087186

RESUMO

Isoprenoids in plants are synthesized following the plastidial methylerythritol-4-phosphate (MEP) pathway or the mevalonate pathway localized to the cytosol and peroxisomes. Isoprenyl-diphosphates (isoprenyl-PP) are important intermediates for the synthesis of chlorophyll, carotenoids, sterols, and other isoprenoids in plants. The quantification of isoprenyl-PP is challenging due to the amphipathic structure, the low abundance, and the susceptibility to hydrolysis during extraction and storage. Different methods for the measurement of isoprenyl-phosphates have been developed. Isoprenyl-phosphates can be measured after radioactive labeling or after derivatization. Liquid chromatography-mass spectrometry (LC-MS) methods provide enhanced sensitivity, but still require the extraction from large amounts of sample material. In the protocol presented here, the monophosphates and diphosphates of farnesol, geranylgeraniol and phytol are isolated from plant material with an isopropanol-containing buffer and quantified by LC-MS using citronellyl-P and citronellyl-PP as internal standards. With a low limit of detection for phytyl-P, geranylgeranyl-P, phytyl-PP, and geranylgeranyl-PP, isoprenyl-phosphates can be accurately measured in Arabidopsis leaves or seeds starting with only 20mg of fresh weight.


Assuntos
Arabidopsis , Difosfatos , Difosfatos/metabolismo , Espectrometria de Massas/métodos , Terpenos/química , Cromatografia Líquida , Plantas/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo
11.
Plant J ; 114(2): 338-354, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36789486

RESUMO

Cytidine diphosphate diacylglycerol (CDP-DAG), an important intermediate for glycerolipid biosynthesis, is synthesized under the catalytic activity of CDP-DAG synthase (CDS) to produce anionic phosphoglycerolipids such as phosphatidylglycerol (PG) and cardiolipin (CL). Previous studies showed that Arabidopsis CDSs are encoded by a small gene family, termed CDS1-CDS5, the members of which are integral membrane proteins in endoplasmic reticulum (ER) and in plastids. However, the details on how CDP-DAG is provided for mitochondrial membrane-specific phosphoglycerolipids are missing. Here we present the identification of a mitochondrion-specific CDS, designated CDS6. Enzymatic activity of CDS6 was demonstrated by the complementation of CL synthesis in the yeast CDS-deficient tam41Δ mutant. The Arabidopsis cds6 mutant lacking CDS6 activity showed decreased mitochondrial PG and CL biosynthesis capacity, a severe growth deficiency finally leading to plant death. These defects were rescued partly by complementation with CDS6 or supplementation with PG and CL. The ultrastructure of mitochondria in cds6 was abnormal, missing the structures of cristae. The degradation of triacylglycerol (TAG) in lipid droplets and starch in chloroplasts in the cds6 mutant was impaired. The expression of most differentially expressed genes involved in the mitochondrial electron transport chain was upregulated, suggesting an energy-demanding stage in cds6. Furthermore, the contents of polar glycerolipids in cds6 were dramatically altered. In addition, cds6 seedlings lost the capacity for cell proliferation and showed a higher oxidase activity. Thus, CDS6 is indispensable for the biosynthesis of PG and CL in mitochondria, which is critical for establishing mitochondrial structure, TAG degradation, energy production and seedling development.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Glicogênio Sintase/metabolismo , Cistina Difosfato/metabolismo , Diglicerídeos/metabolismo , Diacilglicerol Colinofosfotransferase/metabolismo , Mitocôndrias/metabolismo , Fosfatidilgliceróis/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Acta Neuropathol Commun ; 11(1): 21, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707901

RESUMO

Genetic variants in TMEM106B are a common risk factor for frontotemporal lobar degeneration and the most important modifier of disease risk in patients with progranulin (GRN) mutations (FTLD-GRN). TMEM106B is encoding a lysosomal transmembrane protein of unknown molecular function. How it mediates its disease-modifying function remains enigmatic. Several TMEM106B single nucleotide polymorphisms (SNPs) are significantly associated with disease risk in FTLD-GRN carriers, of which all except one are within intronic sequences of TMEM106B. Of note, the non-coding SNPs are in high linkage disequilibrium with the coding SNP rs3173615 located in exon six of TMEM106B, resulting in a threonine to serine change at amino acid 185 in the minor allele, which is protective in FTLD-GRN carriers. To investigate the functional consequences of this variant in vivo, we generated and characterized a knockin mouse model harboring the Tmem106bT186S variant. We analyzed the effect of this protective variant on FTLD pathology by crossing Tmem106bT186S mice with Grn-/- knockout mice, a model for GRN-mediated FTLD. We did not observe the amelioration of any of the investigated Grn-/- knockout phenotypes, including transcriptomic changes, lipid alterations, or microgliosis in Tmem106bT186S/T186S × Grn-/- mice, indicating that the Tmem106bT186S variant is not protective in the Grn-/- knockout mouse model. These data suggest that effects of the associated SNPs not directly linked to the amino acid exchange in TMEM106B are critical for the modifying effect.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Animais , Camundongos , Aminoácidos , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Polimorfismo de Nucleotídeo Único/genética
13.
Plant Biotechnol J ; 21(1): 189-201, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165983

RESUMO

Camelina sativa is an oil crop with low input costs and resistance to abiotic and biotic stresses. The presence of glucosinolates, plant metabolites with adverse health effects, restricts the use of camelina for human and animal nutrition. Cas9 endonuclease-based targeted mutagenesis of the three homeologs of each of the glucosinolate transporters CsGTR1 and CsGTR2 caused a strong decrease in glucosinolate amounts, highlighting the power of this approach for inactivating multiple genes in a hexaploid crop. Mutagenesis of the three homeologs of each of the transcription factors CsMYB28 and CsMYB29 resulted in the complete loss of glucosinolates, representing the first glucosinolate-free Brassicaceae crop. The oil and protein contents and the fatty acid composition of the csgtr1csgtr2 and csmyb28csmyb29 mutant seeds were not affected. The decrease and elimination of glucosinolates improves the quality of the oil and press cake of camelina, which thus complies with international standards regulating glucosinolate levels for human consumption and animal feeding.


Assuntos
Brassicaceae , Glucosinolatos , Animais , Brassicaceae/genética , Brassicaceae/metabolismo , Ácidos Graxos/metabolismo , Glucosinolatos/metabolismo , Mutagênese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Appl Environ Microbiol ; 88(16): e0112622, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35938787

RESUMO

The marine bacterium Alcanivorax borkumensis produces a surface-active glycine-glucolipid during growth with long-chain alkanes. A high-performance liquid chromatography (HPLC) method was developed for absolute quantification. This method is based on the conversion of the glycine-glucolipid to phenacyl esters with subsequent measurement by HPLC with diode array detection (HPLC-DAD). Different molecular species were separated by HPLC and identified as glucosyl-tetra(3-hydroxy-acyl)-glycine with varying numbers of 3-hydroxy-decanoic acid or 3-hydroxy-octanoic acid groups via mass spectrometry. The growth rate of A. borkumensis cells with pyruvate as the sole carbon source was elevated compared to hexadecane as recorded by the increase in cell density as well as oxygen/carbon dioxide transfer rates. The amount of the glycine-glucolipid produced per cell during growth on hexadecane was higher compared with growth on pyruvate. The glycine-glucolipid from pyruvate-grown cells contained considerable amounts of 3-hydroxy-octanoic acid, in contrast to hexadecane-grown cells, which almost exclusively incorporated 3-hydroxy-decanoic acid into the glycine-glucolipid. The predominant proportion of the glycine-glucolipid was found in the cell pellet, while only minute amounts were present in the cell-free supernatant. The glycine-glucolipid isolated from the bacterial cell broth, cell pellet, or cell-free supernatant showed the same structure containing a glycine residue, in contrast to previous reports, which suggested that a glycine-free form of the glucolipid exists which is secreted into the supernatant. In conclusion, the glycine-glucolipid of A. borkumensis is resident to the cell wall and enables the bacterium to bind and solubilize alkanes at the lipid-water interface. IMPORTANCE Alcanivorax borkumensis is one of the most abundant marine bacteria found in areas of oil spills, where it degrades alkanes. The production of a glycine-glucolipid is considered an essential element for alkane degradation. We developed a quantitative method and determined the structure of the A. borkumensis glycine-glucolipid in different fractions of the cultures after growth in various media. Our results show that the amount of the glycine-glucolipid in the cells by far exceeds the amount measured in the supernatant, confirming the proposed cell wall localization. These results support the scenario that the surface hydrophobicity of A. borkumensis cells increases by producing the glycine-glucolipid, allowing the cells to attach to the alkane-water interface and form a biofilm. We found no evidence for a glycine-free form of the glucolipid.


Assuntos
Alcanivoraceae , Glicina , Alcanivoraceae/metabolismo , Alcanos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Parede Celular/metabolismo , Glicina/metabolismo , Ácido Pirúvico/metabolismo , Água/metabolismo
15.
Molecules ; 27(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897961

RESUMO

Incubation of Aminobacter aminovorans, Paenibacillus polymyxa, and Arthrobacter MPI764 with the microbial 2-benzoxazolinone (BOA)-degradation-product 2-acetamido-phenol, produced from 2-aminophenol, led to the recently identified N-(2-hydroxy-5-nitrophenyl) acetamide, to the hitherto unknown N-(2-hydroxy-5-nitrosophenyl)acetamide, and to N-(2-hydroxy-3-nitrophenyl)acetamide. As an alternative to the formation of phenoxazinone derived from aminophenol, dimers- and trimers-transformation products have been found. Identification of the compounds was carried out by LC/HRMS and MS/MS and, for the new structure N-(2-hydroxy-5-nitrosophenyl)acetamide, additionally by 1D- and 2D-NMR. Incubation of microorganisms, such as the soil bacteria Pseudomonas laurentiana, Arthrobacter MPI763, the yeast Papiliotrema baii and Pantoea ananatis, and the plants Brassica oleracea var. gongylodes L. (kohlrabi) and Arabidopsis thaliana Col-0, with N-(2-hydroxy-5-nitrophenyl) acetamide, led to its glucoside derivative as a prominent detoxification product; in the case of Pantoea ananatis, this was together with the corresponding glucoside succinic acid ester. In contrast, Actinomucor elegans consortium synthesized 2-acetamido-4-nitrophenyl sulfate. 1 mM bioactive N-(2-hydroxy-5-nitrophenyl) acetamide elicits alterations in the Arabidopsis thaliana expression profile of several genes. The most responsive upregulated gene was pathogen-inducible terpene synthase TPS04. The bioactivity of the compound is rapidly annihilated by glucosylation.


Assuntos
Arabidopsis , Acetamidas , Acetanilidas , Arabidopsis/metabolismo , Glucosídeos/metabolismo , Nitratos , Pantoea , Espectrometria de Massas em Tandem
16.
Elife ; 112022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536643

RESUMO

Cells steadily adapt their membrane glycerophospholipid (GPL) composition to changing environmental and developmental conditions. While the regulation of membrane homeostasis via GPL synthesis in bacteria has been studied in detail, the mechanisms underlying the controlled degradation of endogenous GPLs remain unknown. Thus far, the function of intracellular phospholipases A (PLAs) in GPL remodeling (Lands cycle) in bacteria is not clearly established. Here, we identified the first cytoplasmic membrane-bound phospholipase A1 (PlaF) from Pseudomonas aeruginosa, which might be involved in the Lands cycle. PlaF is an important virulence factor, as the P. aeruginosa ΔplaF mutant showed strongly attenuated virulence in Galleria mellonella and macrophages. We present a 2.0-Å-resolution crystal structure of PlaF, the first structure that reveals homodimerization of a single-pass transmembrane (TM) full-length protein. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. The dimerization site and the catalytic sites are linked by an intricate ligand-mediated interaction network, which might explain the product (fatty acid) feedback inhibition observed with the purified PlaF protein. We used molecular dynamics simulations and configurational free energy computations to suggest a model of PlaF activation through a coupled monomerization and tilting of the monomer in the membrane, which constrains the active site cavity into contact with the GPL substrates. Thus, these data show the importance of the PlaF-mediated GPL remodeling pathway for virulence and could pave the way for the development of novel therapeutics targeting PlaF.


Assuntos
Fosfolipídeos , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Glicerofosfolipídeos/metabolismo , Proteínas de Membrana , Fosfolipases A , Pseudomonas aeruginosa/metabolismo , Fatores de Virulência/metabolismo
17.
Mol Plant Microbe Interact ; 35(6): 464-476, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35285673

RESUMO

Arbuscular mycorrhizal fungi (AMF) colonize roots, where they provide nutrients in exchange for sugars and lipids. Because AMF lack genes for cytosolic fatty acid de novo synthase (FAS), they depend on host-derived fatty acids. AMF colonization is accompanied by expression of specific lipid genes and synthesis of sn-2 monoacylglycerols (MAGs). It is unknown how host-derived fatty acids are taken up by AMF. We describe the characterization of two AMP-binding domain protein genes from Rhizophagus irregularis, RiFAT1 and RiFAT2, with sequence similarity to Saccharomyces cerevisiae fatty acid transporter 1 (FAT1). Uptake of 13C-myristic acid (14:0) and, to a lesser extent, 13C-palmitic acid (16:0) was enhanced after expression of RiFAT1 or RiFAT2 in S. cerevisiae Δfat1 cells. The uptake of 2H-labeled fatty acids from 2H-myristoylglycerol or 2H-palmitoylglycerol was also increased after RiFAT1 and RiFAT2 expression in Δfat, but intact 2H-MAGs were not detected. RiFAT1 and RiFAT2 expression was induced in colonized roots compared with extraradical mycelium. 13C-label in the AMF-specific palmitvaccenic acid (16:1Δ11) and eicosatrienoic acid (20:3) were detected in colonized roots only when 13C2-acetate was supplemented but not 13C-fatty acids, demonstrating that de novo synthesized, host-derived fatty acids are rapidly taken up by R. irregularis from the roots. The results show that RiFAT1 and RiFAT2 are involved in the uptake of myristic acid (14:0) and palmitic acid (16:0), while fatty acids from MAGs are only taken up after hydrolysis. Therefore, the two proteins might be involved in fatty acid import into the fungal arbuscules in colonized roots.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Glomeromycota , Micorrizas , Proteínas de Saccharomyces cerevisiae , Monofosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Fungos , Glomeromycota/genética , Glomeromycota/metabolismo , Ácidos Mirísticos/metabolismo , Ácidos Palmíticos/metabolismo , Raízes de Plantas/microbiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
J Chem Ecol ; 48(2): 219-239, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34988771

RESUMO

For the characterization of BOA-OH insensitive plants, we studied the time-dependent effects of the benzoxazolinone-4/5/6/7-OH isomers on maize roots. Exposure of Zea mays seedlings to 0.5 mM BOA-OH elicits root zone-specific reactions by the formation of dark rings and spots in the zone of lateral roots, high catalase activity on root hairs, and no visible defense reaction at the root tip. We studied BOA-6-OH- short-term effects on membrane lipids and fatty acids in maize root tips in comparison to the benzoxazinone-free species Abutilon theophrasti Medik. Decreased contents of phosphatidylinositol in A. theophrasti and phosphatidylcholine in maize were found after 10-30 min. In the youngest tissue, α-linoleic acid (18:2), decreased considerably in both species and recovered within one hr. Disturbances in membrane phospholipid contents were balanced in both species within 30-60 min. Triacylglycerols (TAGs) were also affected, but levels of maize diacylglycerols (DAGs) were almost unchanged, suggesting a release of fatty acids for membrane lipid regeneration from TAGs while resulting DAGs are buildings blocks for phospholipid reconstitution, concomitant with BOA-6-OH glucosylation. Expression of superoxide dismutase (SOD2) and of ER-bound oleoyl desaturase (FAD2-2) genes were contemporaneously up regulated in contrast to the catalase CAT1, while CAT3 was arguably involved at a later stage of the detoxification process. Immuno-responses were not elicited in short-terms, since the expression of NPR1, POX12 were barely affected, PR4 after 6 h with BOA-4/7-OH and PR1 after 24 h with BOA-5/6-OH. The rapid membrane recovery, reactive oxygen species, and allelochemical detoxification may be characteristic for BOA-OH insensitive plants.


Assuntos
Meristema , Raízes de Plantas , Benzoxazóis/química , Benzoxazóis/metabolismo , Benzoxazóis/farmacologia , Expressão Gênica , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/farmacologia , Meristema/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Zea mays/genética , Zea mays/metabolismo
19.
Plant J ; 109(5): 1290-1304, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34902195

RESUMO

During chlorophyll degradation, large amounts of the isoprenoid alcohol phytol are released. The pathway of phytol catabolism has been studied in humans, because chlorophyll is part of the human diet, but little is known for plants. In humans, phytanoyl-CoA derived from phytol is degraded via α-oxidation by phytanoyl-CoA hydroxylase (PAHX) and 2-hydroxy-phytanoyl-CoA lyase (HPCL). Arabidopsis contains two sequences homologous to the human proteins AtPAHX and AtHPCL. Insertional mutants of Arabidopsis (pahx, hpcl) were grown under N deprivation to stimulate chlorophyll breakdown or supplemented with phytol to increase the endogenous amount of phytol. During N deprivation, chlorophyll, phytol, phytenal, upstream metabolites of phytol breakdown, and tocopherol and fatty acid phytyl esters, alternative phytol-derived lipids, accumulated in pahx and hpcl mutants, in line with the scenario that the mutations interfere with phytol degradation. AtHPCL was localized to the peroxisomes. Expression analysis of the AtHPCL sequence in the yeast Δpxp1 or Δmpo1 mutants followed by supplementation with 2-hydroxy-palmitic acid and enzyme assays of peroxisomal proteins from Col-0 and hpcl plants with 2-hydroxy-stearoyl-CoA revealed that AtHPCL harbors 2-hydroxy-acyl-CoA lyase activity. The α-dioxygenases αDOX1 and αDOX2 are involved in α-oxidation of fatty acids and could be involved in an alternative pathway of phytol degradation. However, phytol-related lipids in the αdox1, αdox2, or αdox1 αdox2 mutants were not altered compared with Col-0, indicating that αDOX1 and αDOX2 are not involved in phytol degradation. These results demonstrate that phytol degradation in Arabidopsis involves α-oxidation by AtPAHX and AtHPCL, but that it is independent of αDOX1/αDOX2.


Assuntos
Arabidopsis , Liases , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila/metabolismo , Coenzima A/metabolismo , Ácidos Graxos/metabolismo , Liases/metabolismo , Ácido Fitânico/análogos & derivados , Fitol/metabolismo
20.
Cell Mol Life Sci ; 79(1): 48, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951654

RESUMO

BACKGROUND: Pro-apoptotic and pro-inflammatory ceramides are crucially involved in atherosclerotic plaque development. Local cellular ceramide accumulation mediates endothelial apoptosis, especially in type 2 diabetes mellitus, which is a major cardiovascular risk factor. In recent years, large extracellular vesicles (lEVs) have been identified as an important means of intercellular communication and as regulators of cardiovascular health and disease. A potential role for lEVs as vehicles for ceramide transfer and inductors of diabetes-associated endothelial apoptosis has never been investigated. METHODS AND RESULTS: A mass-spectrometric analysis of human coronary artery endothelial cells (HCAECs) and their lEVs revealed C16 ceramide (d18:1-16:0) to be the most abundant ceramide in lEVs and to be significantly increased in lEVs after hyperglycemic injury to HCAECs. The increased packaging of ceramide into lEVs after hyperglycemic injury was shown to be dependent on neutral sphingomyelinase 2 (nSMase2), which was upregulated in glucose-treated HCAECs. lEVs from hyperglycemic HCAECs induced apoptosis in the recipient HCAECs compared to native lEVs from untreated HCAECs. Similarly, lEVs from hyperglycemic mice after streptozotocin injection induced higher rates of apoptosis in murine endothelial cells compared to lEVs from normoglycemic mice. To generate lEVs with high levels of C16 ceramide, ceramide was applied exogenously and shown to be effectively packaged into the lEVs, which then induced apoptosis in lEV-recipient HCAECs via activation of caspase 3. Intercellular transfer of ceramide through lEVs was confirmed by use of a fluorescently labeled ceramide analogue. Treatment of HCAECs with a pharmacological inhibitor of nSMases (GW4869) or siRNA-mediated downregulation of nSMase2 abrogated the glucose-mediated effect on apoptosis in lEV-recipient cells. In contrast, for small EVs (sEVs), hyperglycemic injury or GW4869 treatment had no effect on apoptosis induction in sEV-recipient cells. CONCLUSION: lEVs mediate the induction of apoptosis in endothelial cells in response to hyperglycemic injury through intercellular transfer of ceramides.


Assuntos
Doenças das Artérias Carótidas/metabolismo , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Vesículas Extracelulares/metabolismo , Esfingomielina Fosfodiesterase/fisiologia , Animais , Apoptose , Linhagem Celular , Células Endoteliais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...